
The omniNames CORBA Naming Service

omniORB 4.3

1 Introduction

omniNames is omniORB’s implementation of the OMG’s COS Naming Service
Specification. It offers a way for a client to turn a human-readable name into
an object reference, on which the client can subsequently invoke operations in
the normal way. See the OMG specification for full details of the functionality
provided by the Naming Service.

The Naming Service stores a set of bindings of names to objects. These bind-
ings can be arranged as an arbitrary directed graph, although they are often ar-
ranged in a tree hierarchy. Each node in the graph is a naming context. There is
a ‘root’ context at which name lookups usually start. This is the object returned
by the call to CORBA::ORB::resolve_initial_references("NameService").

2 Data file

omniNames persists its contents in a data file. The data file takes the form of
a ‘redo log’, to which it writes out an entry every time a change is made to the
naming graph. The directory in which this log file is written can be specified with
the -datadir command line option or the OMNINAMES_DATADIR environment vari-
able. When omniNames is restarted it uses the data file so that it can regenerate
the naming graph.

Periodically the data file is checkpointed, removing unnecessary entries from
the file. The idle time between checkpoints defaults to 15 minutes. That can be
overridden by specifying a period in seconds in the OMNINAMES_ITBC environ-
ment variable.

The name of the data file name normally includes the hostname, in the form
omninames-hostname.dat. To suppress inclusion of the hostname, start omni-
Names with the -nohostname option.

Previous versions of omniNames referred to the data file as a ‘log file’, and
the file had the extension ‘.log’. When omniNames starts up, it will accept a
data file with the extension ‘.log’ and replace it with one with the extension
‘.dat’.

1



3 STARTING OMNINAMES AND CONFIGURING OMNIORB 2

3 Starting omniNames and configuring omniORB

When starting omniNames for the first time, you can either let it start with
the default TCP port of 2809, or you can specify the port number on which it
should listen. This is written to the data file so that on subsequent invocations
it will listen on the same port number and thus can be accessible through the
same object reference. When omniNames starts up successfully it writes the
stringified object reference for its root context on standard error.

At startup, omniORB reads its configuration from omniORB.cfg or from the
Windows registry. Amongst other settings, the configuration contains the object
reference to the root context of the Naming Service. This object reference is re-
turned by resolve_initial_references("NameService"). There are a number
of methods of specifying the root naming context—see the omniORB manual for
details.

4 Command line parameters

omniNames accepts the following command line parameters.

-help Output usage information.

-start [port] Start omniNames for the first time, listening on port.

-always In conjunction with -start, always start up omniNames, even if
its data file already exists.

-datadir directory Specifies the directory for the data file, overriding the default.

-logdir directory Equivalent to -datadir, for compatibility with previous omni-
Names versions.

-errlog filename Causes trace output that would normally be sent to stderr to go
to the specified file instead.

-nohostname Normally, omniNames includes the host name in the name of the
data file. This option disables that, meaning the data file can be
used on a different host, or if the host name changes.

-install [port] On Windows, install omniNames service. See below.

-manual On Windows, specify that the service should be configured to
require manual start. See below.

-remove On Windows, uninstall omniNames service. See below.



5 MACHINES WITH MULTIPLE IP ADDRESSES 3

5 Machines with multiple IP addresses

The CORBA naming service is a tree (or graph) of NamingContext CORBA ob-
jects. For each of those CORBA objects, the object reference contains details
about the endpoint—i.e. the host address and port—that is used to contact the
object.

When the machine running omniNames has multiple IP addresses, omniORB
listens for incoming connections on all addresses, but it arbitrarily picks one of
the addresses to publish in object references. It might pick the ‘wrong’ one,
meaning that clients connect to the configured root context successfully, but
then fail to connect to the sub-contexts. To force omniORB to publish the correct
IP address, use the -ORBendPointPublish command line parameter:

-ORBendPointPublish giop:tcp:address:

where address can be an IP address or a host name.
Occasionally, it is necessary to limit omniNames to listen on just one of a

machine’s IP addresses. To do that, use -ORBendPoint to specify the address to
listen on. In this case, you should also specify a port (e.g. the standard 2809),
otherwise an arbitrary ephemeral port will be used for the endpoint:

-ORBendPoint giop:tcp:address:2809

6 Windows service

omniNames can be run as a Windows service. To install the service, run with
the -install command line option, with a port to override the default 2809 if
necessary. The command line should include any other parameters of relevance,
such as the data directory and error log file. It is particularly important to specify
an error log file, since the service runs in an environment where stderr goes
nowhere.

The service is normally configured to start at system startup time. Speci-
fying -manual configures it for manual startup. Regardless of that setting, the
service is not automatically started at the time it is installed. It should be started
manually with the service control manager if it is to run before the next system
restart.

Once installed, the service can be uninstalled by running omniNames with
the -remove option.


